Local maximal operators on fractional Sobolev spaces
نویسندگان
چکیده
منابع مشابه
Conditioning Analysis of Nonlocal Integral Operators in Fractional Sobolev Spaces
We study the condition number of the stiffness matrix arising from finite element discretizations of nonlocal integral operators with singular and integrable kernels. Such operators are used in nonlocal diffusion, peridynamics formulation of continuum mechanics, image processing, and phase transition. We quantify of the extremal eigenvalues with respect to all underlying parameters; the horizon...
متن کاملStability of Discrete Stokes Operators in Fractional Sobolev Spaces
Using a general approximation setting having the generic properties of finite-elements, we prove uniform boundedness and stability estimates on the discrete Stokes operator in Sobolev spaces with fractional exponents. As an application, we construct approximations for the timedependent Stokes equations with a source term in L(0, T ;L(Ω)) and prove uniform estimates on the time derivative and di...
متن کاملGeneralized Fractional Integral Operators on Vanishing Generalized Local Morrey Spaces
In this paper, we prove the Spanne-Guliyev type boundedness of the generalized fractional integral operator Iρ from the vanishing generalized local Morrey spaces V LM {x0} p,φ1 to V LM {x0} q,φ2 , 1 < p < q < ∞, and from the space V LM {x0} 1,φ1 to the weak space VWLM {x0} q,φ2 , 1 < q < ∞. We also prove the Adams-Guliyev type boundedness of the operator Iρ from the vanishing generalized Morrey...
متن کاملComposition in Fractional Sobolev Spaces
1. Introduction. A classical result about composition in Sobolev spaces asserts that if u ∈ W k,p (Ω)∩L ∞ (Ω) and Φ ∈ C k (R), then Φ • u ∈ W k,p (Ω). Here Ω denotes a smooth bounded domain in R N , k ≥ 1 is an integer and 1 ≤ p < ∞. This result was first proved in [13] with the help of the Gagliardo-Nirenberg inequality [14]. In particular if u ∈ W k,p (Ω) with kp > N and Φ ∈ C k (R) then Φ • ...
متن کاملNecessary conditions on composition operators acting on Sobolev spaces of fractional order . The critical case
Let G : R→ R be a sufficiently smooth function. Denote by TG the corresponding composition operator which sends f to G(f). Then we prove necessary conditions on s, p, r, and t such that the inclusion
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Mathematical Society of Japan
سال: 2016
ISSN: 0025-5645
DOI: 10.2969/jmsj/06831357